

Infrared Thermographic Fault Detection using Deep Convolutional Neural Networks on Building-Mounted Photovoltaics

A. Klink, A. S. Bahaj, and P. A. B. James Energy and Climate Change Division & Sustainable Energy Research Group University of Southampton, Southampton, UK

The Problem

Hot Cell

Cracked Panel

- Infrared Thermography:Picture of Temperature of Panels
- Trained Human can Identify Flaws but is Time Intensive

Utility-Scale Capturing the Images

- Drone-based Imagery
- Drone flight-path planned in advanced
- Camera currently controlled manually

Building-Mounted Capturing the Images

- UK drone regulations make flying difficult in developed areas
- Drone is expensive
- Requires skilled operator (commercial license costs £1000+)
- Not economical for building-mounted PV
- New cheap cameras may allow building managers to self-diagnose

InfraTec VarioCAM (£10,000)

FLIR Pro ONE (£300)

Southampton

Creating the Dataset

 Manual conversion of data from historic PDF reports to CSV tables and raw files

Sector	В	Sector	В
Row 1		Row	1
Location (East, West, Middle) W	Location (East, West, Middle)	w
Vertical Panel Position C		Vertical Panel Position	C
Image Camera Model Object Emissivity	FLIR T420 (incl Wi- 0.86	Image Camera Model	FLIR T420 (incl Wi-
Object Distance	1.0 m	Object Emissivity	0.86
Atmospheric Temperature	20.0 °C	Object Distance	1.0 m
		Atmospheric Temperature	20.0 ℃

Acceptance		Acceptance	P P
Criteria		Criteria	
Issue	Hot String	Issue	Hot String

 Must convert from 'closed' format using expensive software

	Α	В	C
1	FILE	SEVERITY	ISSUE_CATEGORY
2	FLIR8382.jpg	Green	Hot Spot
3	FLIR8383.jpg	Green	Random - PID
4	FLIR8384.jpg	Yellow	Hot String
5	FLIR8385.jpg	Yellow	Hot String
6	FLIR8386.jpg	Yellow	Hot String
7	FLIR8387.jpg	Yellow	Rev: Hot String
8	FLIR8388.jpg	Yellow	Hot String
9	FLIR8389.jpg	Yellow	Rev: Hot String
10	FLIR8390.jpg	Yellow	Hot String
11	FLIR8391.jpg	Green	Hot Row

Data Augmentation

Rotation, Crop, Flip, Zoom, Skew, Brightening

Data Augmentation

Rotation, Crop, Flip, Zoom, Skew, Brightening

Artificial Neural Networks

Deep Learning

Convolutional Neural Networks

Automatically predicting data

Machine Learning

Artificial Neural Networks

Deep Learning

Convolutional Neura Networks

- Built out of Neurons
- Follows human brain
- Can form complex shapes with simple addition/multiplication

Machine Learning

Artificial Neural Networks

Deep Learning

Convolutional Neural Networks

- Many layers of Neurons
- Needs more data
- Can model complex non-linear relationships

Machine Learning

Artificial Neural Networks

Deep Learning

Convolutional Neural Networks

Image by Aphex34 licensed under CC by-sa 4.0

- Neural Network for Images
- Good for classification
- Often better than humans

Southamptor

Utility Scale Results

- Deep Neural Network Accuracy
 - 75% training
 - 54% on test data
- Convolutional Neural Network Accuracy
 - 99% training
 - 76% on test data

Building-Mounted Initial Results

- Results are not good.
 Predictions for all building-mounted PV images are very similar.
- Algorithm was only trained on drone images, therefore confused by nondrone images.

AA070300.asc

200

Building-Mounted Results after Training

- Large increase in prediction
- "Other": dirt, plant shading, bird droppings, visible to human eye
 - Small portion of utilityscale data
 - Large portion of buildingmounted data

 1.7×10^{-1}

1.8 × 10⁻¹ 1.9 × 10⁻¹

 1.6×10^{-1}

 1.5×10^{-1}

AA070300.asc

Southampton

Summary

- Infrared Thermography (image of heat)
 - Can be used to cheaply find faults in PV solar modules
- Convolutional Neural Network
 - Can predict likely fault type of solar panel when 'trained' from known data
 - Designed for images and achieved 76% on test data.
- Building-Mounted PV images
 - Adding only a few images to the dataset added good prediction for faults in PV

Infrared Thermographic Fault Detection using Deep Convolutional Neural Networks on Building-Mounted Photovoltaics Thank you